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1. Introduction

Supersymmetric classical solutions of supergravity theories (low-energy superstring the-

ories) are a key tool in the current research on many topics ranging from AdS/CFT

correspondence to stringy black-hole physics. Not all locally supersymmetric solutions are

necessarily interesting or useful in the end, but, clearly, it is an important goal to find them

all for every possible supergravity theory.

This goal has been pursued and reached in several lower-dimensional theories and

families of theories. The pioneering work [1] was done in 1983 by Tod in pure, ungauged,

N = 2, d = 4 supergravity. It has been subsequently extended to the gauged case in ref. [2],

to include the coupling to general (ungauged) vector multiplets and hypermultiplets in

refs. [3] and [4], respectively and some partial results on the theory with gauged vector

multiplets have been recently obtained [5]. Research on pure N = 4, d = 4 supergravity

was started in ref. [6] and completed in ref. [7].

In d = 5, the minimal N = 1 (sometimes referred as N = 2) theory was worked out

in ref. [8] and the results were extended to the gauged case in ref. [9]. The coupling to
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an arbitrary number of vector multiplets and their Abelian gaugings was considered in

refs. [10, 11].1 The inclusion of (ungauged) hypermultiplets was considered in [14]2 and

the extension to the most general gaugings with vector multiplets and hypermultiplets was

worked out in [18].

The minimal d = 6 SUGRA was dealt with in refs. [19, 20], some gaugings were

considered in ref. [21] and the coupling to hypermultiplets has been fully solved in ref. [22].

All these works are essentially based on the method pioneered by Tod and generalized

by Gauntlett et al. in ref. [8], which we will use here. An alternative method is that of

spinorial geometry, developed in ref. [23]. Further works on this subject in 4 or higher

dimensions are refs. [24].

It is somewhat surprising that the simpler N = 1, d = 4 theories have not yet been

studied. The purpose of this paper is to start filling this gap. We will find all the super-

symmetric configurations and solutions of ungauged N = 1, d = 4 supergravity and we will

relate them to supersymmetric solutions of N = 2, d = 4 supergravity theories that we can

truncate to N = 1, d = 4 theories following [25, 26]. As we are going to see, there are no

timelike supersymmetric solutions such as charged, extreme, black holes in these theories

and in the null class we find essentially pp-waves, cosmic strings and combinations of both.

This is, precisely, the kind of supersymmetric solutions of N = 2, d = 4 supergravity that

would survive the truncation to N = 1.

We are also going to study the extension of the set of standard bosonic fields of N =

1, d = 4 supergravity along the lines of ref. [27]. We are going to show that we can add

consistently (we can define supersymmetry transformations for them such that the local

supersymmetry algebra closes) the magnetic vectors and also 2-forms which are associated

to the isometries of the scalar manifold. The electric and magnetic vectors of the theory

transform into the gauginos and not into the gravitino. This makes it impossible to write a

κ-symmetric action for 0-branes, in agreement with the absence of supersymmetric black-

hole solutions in the theory. The 2-forms do transform into the gravitino and one can, in

principle, construct κ-symmetric actions for 1-branes, which agrees with the existence of

supersymmetric string solutions.

This paper is organized as follows: in section 2 we introduce ungauged N = 1, d = 4

supergravity coupled to vector and chiral supermultiplets. We obtain this theory by trun-

cation of ungauged N = 2, d = 4 supergravity coupled to vector supermultiplets and hyper-

multiplets in appendix A. This helps us to fix the conventions and to relate the solutions

to N = 2, d = 4 solutions. In section 3 we set up the problem we aim to solve. In sec-

tion 4.1 we find all the bosonic field configurations that admit Killing spinors (as we check

in section 4.2) and in section 4.3 we identify amongst them those that satisfy the classical

equations of motion, which solves our problem. In section 5 we find the bosonic field ex-

tensions of the theory. Finally, in section 6 we discuss our results and give our conclusions.

After completion of this work we became aware that a similar results have been ob-

tained by U. Gran, J. Gutowski and G. Papadopoulos and are about to be published [28].

1Previous work on these theories can be found in refs. [12, 13].
2Previous partial results on that problem were presented in refs. [15 – 17].
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2. Matter-coupled, ungauged, N = 1, d = 4 supergravity

In this section we describe briefly the theory [29], which is obtained by truncation of

N = 2, d = 4 theories in the appendix. Our conventions are derived from those we use in

the study of N = 2, d = 4 theories [3 – 5]. It contains a supergravity multiplet with one

graviton eaµ and one chiral gravitino ψ•µ, nC chiral multiplets with as many chiral dilatini

χ•
i and complex scalars Zi, i = 1, · · · nC that parametrize a Kähler-Hodge manifold with

metric Gij∗, and nV vector multiplets with as many vector fields AΛ and chiral gaugini λ•
Λ

Λ = 1, · · · , nV .

The action for the bosonic fields is

S =

∫

d4x
√

|g|
[

R+ 2Gij∗∂µZ
i∂µZ∗ j∗ −ℑmfΛΣF

ΛµνFΣ
µν −ℜefΛΣF

Λµν⋆FΣ
µν

]

, (2.1)

where fΛΣ(Z) is a nV × nV matrix with entries which are holomorphic functions of the

complex scalars and with definite positive imaginary part.

The supersymmetry transformation rules for the bosonic fields are

δǫe
a
µ = − i

4
ψ̄•µγ

aǫ• + c.c. , (2.2)

δǫA
Λ

µ =
i

8
λ̄•

Λγµǫ
• + c.c. , (2.3)

δǫZ
i =

1

4
χ̄•

iǫ• , (2.4)

and those of the fermions, for vanishing fermions, are

δǫψ•µ = Dµǫ• =

(

∇µ +
i

2
Qµ

)

ǫ• , (2.5)

δǫλ•
Λ =

1

2
6FΛ+ǫ• , (2.6)

δǫχ•
i = i 6∂Ziǫ• , (2.7)

where Qµ is the pullback of the Kähler 1-form connection

Q ≡ 1

2i
(dzi∂iK− dz∗ i∗∂i∗K) , (2.8)

where K is the Kähler potential from which the Kähler metric can be derived in the standard

fashion, namely

Gij∗ = ∂i∂j∗K . (2.9)

For convenience, we denote the bosonic equations of motion by

Ea
µ ≡ − 1

2
√

|g|
δS

δeaµ
, E i ≡ − Gij∗

2
√

|g|
δS

δZ∗j∗
, EΛ

µ ≡ 1

4
√

|g|
δS

δAΛ
µ
. (2.10)

and the Bianchi identities for the vector field strengths by

BΛµ ≡ ∇ν ⋆ F
Λ νµ , ⋆BΛ ≡ −dFΛ . (2.11)
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Then, using the action eq. (2.1), we find

Eµν = Gµν + 2Gij∗

[

∂µZ
i∂νZ

∗ j∗ − 1

2
gµν∂ρZ

i∂ρZ∗ j∗
]

− 4ℑmfΛΣF
Λ +

µ
ρFΣ−

νρ , (2.12)

Ei = Gij∗Dµ∂
µZ∗ i∗ + ∂i[FΛ

µν ⋆ FΛ
µν ] (2.13)

= Gij∗Dµ∂
µZ∗ i∗ − i

2
∂ifΛΣF

Λ +
µνF

Σ +µν , (2.14)

EΛ
µ = ∇ν ⋆ FΛ

νµ , (2.15)

where we have defined the dual vector field strength FΛ by

FΛ µν ≡ − 1

2
√

|g|
δS

δ⋆FΛ
µν

= ℜefΛΣF
Σ

µν −ℑmfΛΣ
∗FΣ

µν = 2ℜe (fΛΣF
Σ +) . (2.16)

The Maxwell equations can be read as Bianchi identities for these dual field strengths

ensuring the local existence of nV dual vector potentials AΛ such that

FΛ = dAΛ . (2.17)

It is convenient to combine the standard, electric, field strengths and potentials and

their duals eq. (2.16) into a single 2nV -dimensional symplectic vector

F ≡
(

FΛ

FΛ

)

= dA ≡ d

(

AΛ

AΛ

)

. (2.18)

The global symmetries of these theories will be the isometries of the scalar manifold

that can be embedded in Sp(2nV ,R) [30].

3. Supersymmetric configurations: general setup

Our first goal is to find all the bosonic field configurations {gµν , F
Λ

µν , Z
i} for which the

Killing spinor equations (KSEs):

δǫψ•µ = Dµǫ• = 0 , (3.1)

δǫλ•
Λ =

1

2
6FΛ+ǫ• = 0 , (3.2)

δǫχ•
i = i 6∂Ziǫ• = 0 , (3.3)

admit at least one solution. It must be stressed that the configurations considered need

not be classical solutions of the equations of motion. Furthermore, we will not assume that

the Bianchi identities are satisfied by the field strengths of a configuration.

Our second goal will be to identify among all the supersymmetric field configurations

those that satisfy all the equations of motion (including the Bianchi identities).

Let us initiate the analysis of the KSEs by studying their integrability conditions.

– 4 –
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3.1 Killing Spinor Identities (KSIs)

Using the supersymmetry transformation rules of the bosonic fields eqs. (2.2)–(2.4) and

using the results of refs. [31, 32] we can derive following relations (Killing spinor identities,

KSIs) between the (off-shell) equations of motion of the bosonic fields eqs. (2.12)–(2.15)

that are satisfied by any field configuration {eaµ, A
Λ

µ, Z
i} admitting Killing spinors:

Eµ
aγ

aǫ• = 0 , (3.4)

EΛ
µγµǫ

• = 0 , (3.5)

Eiǫ• = 0 . (3.6)

In this way of finding the KSIs the Bianchi identities are assumed to be satisfied. It is

convenient to have KSIs in which they appear explicitly. These can be found through the in-

tegrability conditions of the KSEs. The only KSI in which we expect the Bianchi identities

to appear is the second one above, which involves the Maxwell equations. The Bianchi iden-

tities should combine with the Maxwell equations in a electric-magnetic duality-invariant

way. Then, the second KSI above should be replaced by

(EΛ
µ − f∗ΛΣBΣµ)γµǫ

• = 0 . (3.7)

This can be explicitly checked via the following integrability condition of the gaugini:

6Dδǫλ•Λ = (ℑmf)−1|ΛΣ(6 EΣ − f∗ΣΩ 6 BΩ)ǫ• (3.8)

+i(ℑmf)−1|ΛΣ 6∂fΣΩδǫλ•
Ω − 1

4
6FΛ−δǫχ

• i∗ +
1

2
γµ 6FΛ +δǫψ•µ .

From these identities one can derive identities that involve tensors constructed as

bilinears of the Killing spinors. In N = 1 supergravity there is only one chiral spinor ǫ•.

With it, we can only construct a real null vector lµ = i
√

2ǭ•γµǫ•, one self-dual 2-form

Φµν = ǭ•γµνǫ• and no scalars. In the N > 1 cases one can construct a vector which is

non-spacelike and, thus, one considers separately the case in which the vector is timelike

and the case in which it is null. In N = 1, d = 4 there is no timelike case. It is convenient

to introduce an auxiliary chiral spinor η• with normalization

ǭ•η• =
1

2
, (3.9)

and with the same chirality but opposite Kähler weight as ǫ•. With both spinors we

construct the null tetrad

lµ = i
√

2ǭ•γµǫ• , nµ = i
√

2η̄•γµη• ,

mµ = i
√

2ǭ•γµη• , m∗
µ = i

√
2ǭ•γµη

• .
(3.10)

l and n have 0 U(1) charges but m has −2 times the charges of ǫ and m∗ has +2 times the

charges of ǫ.

Now, acting with i
√

2ǭ and i
√

2η̄ on the left of eqs. (3.4) and (3.7) we get, respectively

Eµν l
ν = Eµνm

ν = 0 , (3.11)

(EΛ µ − fΛΣBΣ
µ)lµ = (EΛ µ − fΛΣBΣ

µ)mµ = 0 . (3.12)
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Eq. (3.6) implies, directly

Ei = 0 . (3.13)

These are identities satisfied off-shell by all supersymmetric field configurations.

This means that the only independent equations of motion that we have to impose on

supersymmetric configurations are

Eµνn
µnν = 0 , (3.14)

(EΛ µ − fΛΣBΣ
µ)nµ = 0 , (3.15)

(EΛ µ − fΛΣBΣ
µ)m∗µ = 0 . (3.16)

4. Supersymmetric configurations and solutions

4.1 Supersymmetric configurations

Our first goal is to derive from the KSEs consistency conditions expressed in terms of the

null tetrad vectors.

Acting on the KSE eq. (3.2) with ǭ•γµ and η̄•γµ we get, respectively

FΛ +
µν l

ν = 0 , (4.1)

FΛ +
µνm

∗ν = 0 , (4.2)

which imply that3

FΛ + =
1

2
φΛl̂ ∧ m̂∗ , (4.3)

for some functions φΛ to be determined. This form of FΛ + solves the KSE eq. (3.2) by

virtue of the Fierz identities

lµγ
µνǫ• = lνǫ• , m∗

µγ
µνǫ• = m∗νǫ• . (4.4)

Acting now on the KSE eq. (3.3) with i
√

2ǭ• and i
√

2η̄• we get, respectively

lµ∂µZ
i = 0 , (4.5)

mµ∂µZ
i = 0 , (4.6)

which imply

dZi = Ai l̂ +Bim̂ , (4.7)

for some functions Ai and Bi to be determined. This form of dZi solves the KSE eq. (3.3)

by virtue of the Fierz identities

6 lǫ∗ = 6mǫ∗ = 0 . (4.8)

Now, from the normalization condition of the auxiliary spinor η• we find the condition

Dµη• + aµǫ• = 0 , (4.9)

3We use hats to denote differential forms: l̂ ≡ lµdx
µ, m̂

∗

≡ m
∗

µdx
µ etc.
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for some aµ with U(1) charges −2 times those of ǫ, i.e.

Dµaν = (∇µ − iQµ)aν , (4.10)

to be determined by the requirement that the integrability conditions of this differential

equation have to be compatible with those of the differential equation for ǫ.

Taking the covariant derivative of the null tetrad vectors and using the KSE eq. (3.1),

we find

Dµlν = ∇µlν = 0 , (4.11)

Dµnν = ∇µnν = −a∗µmν − aµm
∗
ν , (4.12)

Dµmν = (∇µ − iQµ)mν = −aµlν . (4.13)

The first of these equations is solved by identifying the most general metric compatible

with it: a Brinkmann pp-wave metric [33, 34]. One introduces the coordinates u and v

such that

l̂ = lµdx
µ ≡ du , (4.14)

lµ∂µ ≡ ∂

∂v
, (4.15)

and defines a complex coordinate z by

m̂ = eUdz , (4.16)

where U may depend on z, z∗ and u. The most general form that n̂ can take in this case is

n̂ = dv +Hdu+ ω̂ , ω̂ = ωzdz + ωz∗dz
∗ , (4.17)

where all the functions in the metric are independent of v and where either H or the 1-form

ω̂ could, in principle, be removed by a coordinate transformation but we have to check that

the tetrad integrability equations (4.11)–(4.13) are satisfied by our choices of eU ,H and ω̂

The above choice of coordinates leads to the metric

ds2 = 2du(dv +Hdu+ ω̂) − 2e2Udzdz∗ . (4.18)

It also implies that the complex scalars Zi are functions of z and u but not of z∗ and v.

The same is true for Ai and Bi.

Let us consider the tetrad integrability equations (4.11)–(4.13): the first equation is

solved because the metric does not depend on v. The third equation, with the choice of

coordinate z, eq. (4.16), implies

â = nµ(∂µU − iQµ)m̂+Dl̂ , (4.19)

mµ∂µ(U − iQµ) = 0 , (4.20)

where D is a function to be determined.

– 7 –
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The second equation can be written using the definition of the Kähler connection and

the dependence Zi(z, u) in the form

∂z∗(U + K/2) = 0 ⇒ U = −K/2 + h(u) , (4.21)

where h(u) can be eliminated by a coordinate redefinition that does not change the general

form of the Brinkmann metric.

The second tetrad integrability equation (4.12) implies

D = e−U (∂z∗H − ω̇z∗) , (4.22)

(dω)zz∗ = 2ie2UnµQµ , (4.23)

whence â is given by

â = [U̇ − 1

2
e−2U (dω)zz∗ ]m̂+ e−U (∂z∗H − ω̇z∗)l̂ . (4.24)

4.2 Killing spinor equations

We are now going to see that field configurations given by a metric of the form (eqs. (4.18)

where ω̂ satisfies (eq. (4.23)) and U satisfies eq. (4.21), field strengths given by eqs. (4.3)

and scalars of the form (4.7) are always supersymmetric, even though we derived these

equations as necessary conditions for supersymmetry.

With the above form of the scalars and vector field strengths the KSE δǫχ•
i = 0 takes

the form

i[Ai 6 l +Bi 6m]ǫ• = 0 . (4.25)

This equation is solved by imposing two conditions on the spinors:

6 lǫ• = 0 , 6mǫ• = 0 . (4.26)

As shown in ref. ([3]) these two constraints are not just compatible but equivalent and only

half of the supersymmetries are broken by them.

Let us now consider the KSE δǫψ• a = 0. It takes the form

{∂a −
1

4
ωabcγ

bc +
i

2
Qa}ǫ• = 0 . (4.27)

The v component is automatically satisfied for v-independent Killing spinors. The

z and z∗ components take, after use of the constraints eq. (4.26) and their consequence

γzz∗ǫ• = ǫ• the form

{∂z +
1

2
∂z(U + K/2)}ǫ• = 0 , (4.28)

{∂z∗ +
1

2
∂z∗(U + K/2)}ǫ• = 0 . (4.29)

They are solved for z- and z∗-independent spinors once eq. (4.21) is taken into account.

The u component simply implies that the Killing spinors are also u-independent.

Thus, all the configurations identified are supersymmetric with Killing spinors which

are constant spinors satisfying eqs. (4.26). Thus, they generically preserve 1/2 of the

supersymmetries (no less).

– 8 –
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4.3 Solutions

The Bianchi identities take, in differential-form language, the form

B̂Σ = −dFΛ =
1

2
d(φΣm̂+ c.c) ∧ l̂ , (4.30)

and are solved by

AΛ = ϕΛ(z, u)du + c.c. , eK/2∂zϕ
Λ(z, u) = φ∗Λ . (4.31)

The Maxwell equations take the form

ÊΛ = d(fΛΣF
Λ + + c.c.) = −1

2
d(fΛΣφ

Σm̂∗ + c.c) ∧ l̂ , (4.32)

which is solved by holomorphic functions ϕΛ(z, u) such that

∂zϕΛ(z, u) = f∗ΛΣφ
∗Σe−K/2 . (4.33)

Using the solution of the Bianchi identities, we get

∂zϕΛ(z, u) = f∗ΛΣ∂zϕ
Σ(z, u) . (4.34)

Taking now into account that fΛΣ is a holomorphic function of the Zis which are, them-

selves, holomorphic functions of z (and standard functions of u), we arrive to the conclusion

that the above equation can be solved in two ways: either the Zis are z-independent or

∂zϕΛ(z, u) = f∗ΛΣ∂zϕ
Σ(z, u) = 0 . (4.35)

In general fΛΣ will not have null eigenvectors and, therefore, the only generic solutions are

z-independent ϕΣ and, therefore, trivial vector fields.

Taking into account eq. (4.35), the only non-automatically satisfied component of the

Einstein equations is4

∂z∂z∗H − e−K/2∂2
ue

−K/2 − e−KGij∗∂uZ
i∂uZ

∗ j∗ − 1

2
ℑmfΛΣ∂zϕ

Λ∂z∗ϕ
∗Σ = 0 . (4.36)

There are two cases to be considered:

• When the Zis are z-independent. Then

H = ℜef(z) + [e−K/2∂2
ue

−K/2 + e−KGij∗∂uZ
i∂uZ

∗ j∗]|z|2 +
1

2
ℑmfΛΣϕ

Λϕ∗Σ . (4.37)

These solutions describe gravitational, electromagnetic and scalar pp waves.

• When the Zis are not z-independent. The vector fields are trivial, but the above equa-

tion is not easy to integrate. In the special case in which the Zis are u-independent

holomorphic functions of z

H = ℜef(z) . (4.38)

These solutions describe a superposition of a pp-wave and cosmic strings such as those

studied in refs. [35 – 37, 27] and found in N = 4, d = 4 [6, 32] and N = 2, d = 4 [3, 4]

theories.

4For simplicity we choose the gauge ω = 0.
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5. Extensions

In this section we are going to explore the possible extensions of the standard formulation

of N = 1, d = 4 supergravity, using our previous results on the supersymmetric solutions of

the theory. These suggest the possible addition of 2-forms associated to the isometries of

the Kähler scalar manifold. These should couple to the cosmic string solutions exactly in

the form discussed in ref. [27] for N = 2, d = 4 supergravity. Since one can define magnetic

potentials from the Maxwell equations, it should also be possible to add dual, magnetic, 1-

forms. These, however, may not couple to any standard 0-brane since all 1-forms transform

into gaugini (and not the gravitino) under supersymmetry.

5.1 1-forms

Given the supersymmetry transformation rule of the standard (electric) potentials eq. (2.3)

and the definition of the dual field strengths eq. (2.16), the simplest Ansatz for the trans-

formation of the dual (magnetic) potentials AΛ would be

δǫAΛ µ =
i

8
f∗ΛΣǭ•γµλ

•Σ + c.c. . (5.1)

[δη, δǫ]AΛ µ = −2ℜe[af∗ΛΣF
Σ−

µν ]ξν , (5.2)

(5.3)

where

ξν ≡ i

4
ǭ•γ

νη• + c.c. . (5.4)

In absence of the functions fΛΣ, we have

[δη, δǫ]A
Λ

µ = −2ℜe[FΛ−
µν ]ξν = −FΛ

µνξ
ν = [δg.c.t.(ξ) + δgauge(Λ

Λ)]AΛ
µ , (5.5)

where

δg.c.t.(ξ)A
Λ

µ = ξν∂νA
Λ

µ + ∂µξ
νAΛ

ν , (5.6)

and

δgauge(Λ)AΛ
µ = ∂µΛΛ , ΛΛ ≡ −ξνAΛ

ν . (5.7)

In presence of the functions fΛΣ, we have

[δη , δǫ]AΛ µ = −2ℜe[f∗ΛΣF
Σ−

µν ]ξν = −FΛ µνξ
ν = [δg.c.t.(ξ) + δgauge(ΛΛ)]AΛ µ , (5.8)

where the g.c.t.s and gauge transformations have the same form and the parameter of the

gauge transformations is now

ΛΛ ≡ ξνAΛ ν . (5.9)

5.2 2-forms

2-forms can be introduced in the theory by dualizing the Noether currents associated to

those isometries of the scalar manifold that are symmetries of the whole theory [27]. We
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are always talking, then, of a subgroup of Sp(2nV ,R) [30]. The action of these symmetries

on the fields is

δZi = αAkA
i(Z) , (5.10)

δF = αATAF , (5.11)

where F is defined in eq. (2.16) and where the TA are matrices of sp(2nV ) that generate

the Lie algebra of the symmetry group:

[kA, kB ] = −fAB
CkC , [TA, TB ] = +fAB

CTC . (5.12)

The computation of the Noether current proceeds as in ref. [27] and the result is

identical, up to the difference between the period matrix and fΛΣ:

JN µ = αAJN A µ , JN A µ = 2k∗A i∂µZ
i + c.c. − 2〈 ⋆Fµν | TAAν 〉 . (5.13)

These Noether currents are covariantly conserved, i.e.

d ⋆ JN A = 0 , (5.14)

which implies the local existence of 2-forma BA such that

dBA ≡ ⋆JN A = 2k∗A i ⋆ dZ
i + c.c.− 2〈F | TAA〉 . (5.15)

The second term in the r.h.s. is not invariant under the gauge transformations of the vector

potentials, and the same is therefore true for the 2-forms BA, which transform as

δgaugeA = dΛ , (5.16)

δgauge(Λ,Λ1 A)BA = dΛ1 A − 2〈F | TAΛ 〉 . (5.17)

One, then, defines the gauge-invariant 3-form field strengths

HA ≡ dBA + 2〈F | TAA〉 = 2k∗A i ⋆ dZ
i + c.c. . (5.18)

Inspired by the results of ref. [27] it is not difficult to guess the form of the supersym-

metry transformation rules of these 2-forms:

δǫBA µν = − i

2
k∗A iǭ•γµνχ•

i + c.c.

+iPAǭ
•γ[µ|ψ•|ν] + c.c. (5.19)

−4〈A[µ| | TAδǫA|ν] 〉 ,

where PA is the momentum map associated to the Killing vector kA.

We find

[δη, δǫ]BA µν = [δg.c.t.(ξ) + δgauge(Λ,Λ1 A)]BA µν , (5.20)

where ξ is defined in eq. (5.4), Λ in eqs. (5.7) and (5.9) and Λ1 A is given by

Λ1 A µ ≡ −2PAξµ . (5.21)

A shown in ref. [27] in N = 2, d = 4 supergravity theories, these 2-forms can be coupled

to strings of different species labeled by A whose tensions would be proportional to PA.
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6. Conclusions

We have found all the supersymmetric configurations and solutions of ungauged N =

1, d = 4 with arbitrary couplings to vector and chiral supermultiplets. It is clear that,

qualitatively, these are those of ungauged N = 2, d = 4 supergravity whose fields and

Killing spinors survive the N = 2 → N = 1 truncation explained in the appendix, although

the scalar manifolds of the N = 1 theory are more general. In particular, all the N = 2

supersymmetric configurations in the timelike class (typically black holes) do not survive

this truncation since their supersymmetry projectors

ǫI + iǫIJγ0ǫ
J = 0 , (6.1)

involve necessarily the two supersymmetry parameters and one of them is eliminated in

the truncation. The fields of extreme, supersymmetric N = 2, d = 4 black holes may still

survive the truncation to N = 1, but they will not be BPS in this theory.

The Killing spinors supersymmetric configurations of the null class obey projections

of the form

γuǫI = 0 , I = 1, 2 , (6.2)

and, thus, they always survive the truncation.

It is likely that the situation in the most general (gauged) N = 1, d = 4 theory is the

same, and, again qualitatively, the supersymmetric solutions can be obtained by truncation

from the N = 2, d = 4 theory on which some partial results are already available [5]. Of

course, a direct calculation is necessary and, anyway, the most general supersymmetric

solutions of gauged N = 2, d = 4 supergravity are not known, although progress in this

direction is being made [38]. Work in this direction is already in progress [39].

Further extensions (3- and 4-forms) are clearly possible and a more general study of the

possibilities in more general (gauged) N = 1, d = 4 supergravities has to be performed [40]

to compare the results with those of the Kac-Moody approach.
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A. Truncating N = 2 to N = 1 supergravity in d = 4

The purpose of this appendix is to show, following refs. [25, 26], how ungauged N = 2, d = 4

supergravity coupled to vector multiplets can be truncated to ungauged N = 1, d = 4

supergravity by decoupling the N = 1 supermultiplet that contains the second gravitino
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ψ2µ. We will only deal with the leading terms in fermions. In doing so, we will obtain

N = 1, d = 4 supergravity in suitable conventions and the relations between the fields of

both theories.

A.1 Ungauged matter-coupled N = 2, d = 4 supergravity

We start by a very brief description of ungauged N = 2, d = 4 supergravity coupled to

vector multiplets referring the reader to refs. [3, 7] for detailed description of the conventions

and further references to the literature.

The gravity multiplet of the N = 2, d = 4 theory consists of the graviton eaµ, a pair

of gravitinos ψI µ , (I = 1, 2) which we describe as Weyl spinors, and a vector field Aµ.

Each of the n vector supermultiplets of N = 2, d = 4 supergravity that we are going to

couple to the pure supergravity theory contains complex scalar Zi , (i = 1, · · · , nV ), a

pair of gauginos λI i, which we also describe as Weyl spinors and a vector field Ai
µ. In

the coupled theory, the nV + 1 vectors can be treated on the same footing and they are

described collectively by an array AΛ
µ (Λ = 1, · · · , nV + 1). The coupling between the

complex scalars is described by a non-linear σ-model with Kähler metric Gij∗(Z,Z
∗) , and

the coupling to the vector fields by a complex scalar-field-valued matrix NΛΣ(Z,Z∗). These

two couplings are related by a structure called special Kähler geometry, described in the

references.Each hypermultiplet consists of 4 real scalars q (hyperscalars) and 2 Weyl spinors

ζ called hyperinos. The 4m hyperscalars are collectively denoted by qu , u = 1, · · · , 4m and

the 2nH hyperinos are collectively denoted by ζα , α = 1, · · · , 2nH . The 4nH hyperscalars

parametrize a quaternionic Kähler manifold with metric Huv(q).

The action for the bosonic fields of the theory is

S =

∫

d4x
√

|g|
[

R+ 2Gij∗∂µZ
i∂µZ∗ j∗ + 2Huv∂µq

u∂µqv

+2ℑmNΛΣF
Λ µνFΣ

µν − 2ℜeNΛΣF
Λ µν⋆FΣ

µν

]

, (A.1)

In these conventions ℑmNΛΣ is negative definite.

For vanishing fermions, the supersymmetry transformation rules of the fermions are

δǫψI µ = DµǫI + ǫIJT
+

µνγ
νǫJ , (A.2)

δǫλ
Ii = i 6∂ZiǫI + ǫIJ 6Gi +ǫJ , (A.3)

δǫζα = −iCαβ U
βI

u εIJ 6∂qu ǫJ , (A.4)

where Dµ, the Lorentz- and Kähler- and SU(2)-covariant derivative acts on the spinors ǫI
as

DµǫI = (∇µ +
i

2
Qµ) ǫI + Aµ I

J ǫJ . (A.5)

and Qµ is the pullback of the Kähler 1-form defined in eq. (2.8) and Aµ I
J is the pullback

of the SU(2) connection AI
J .

The 2-forms T and Gi are the combinations

Tµν ≡ TΛF
Λ

µν , (A.6)

Gi
µν ≡ T i

ΛF
Λ

µν , (A.7)
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where, in turn, TΛ and T i
Λ are, respectively, the graviphoton and the matter vector fields

projectors, defined by

TΛ ≡ 2iLΛ = 2iLΣℑmNΣΛ , (A.8)

T i
Λ ≡ −f∗Λ

i = −Gij∗f∗Σ
j∗ℑmNΣΛ . (A.9)

The supersymmetry transformations of the bosons are

δǫe
a
µ = − i

4
(ψ̄I µγ

aǫI + ψ̄I
µγ

aǫI) , (A.10)

δǫA
Λ

µ =
1

4
(LΛ ∗ǫIJ ψ̄I µǫJ + LΛǫIJ ψ̄

I
µǫ

J)

+
i

8
(fΛ

iǫIJ λ̄
Iiγµǫ

J + fΛ∗
i∗ǫ

IJ λ̄I
i∗γµǫJ) , (A.11)

δǫZ
i =

1

4
λ̄IiǫI , (A.12)

δǫq
u =

1

4
UαI

u(ζ̄αǫI + C
αβǫIJ ζ̄βǫJ) . (A.13)

A.2 Truncation to N = 1, d = 4 supergravity

The truncation to N = 1, d = 4 supergravity consists in setting to zero the supermultiplet

that contains the second gravitino ψ2 µ and the graviphoton. The remaining fields in the

supergravity multiplet {eaµ, ψ1µ} will become those of the N = 1, d = 4 supergravity

multiplet and the nV N = 2, d = 4 vector multiplets will be split into nV chiral multiplets,

each of them containing one complex scalar and the first component of one N = 2 gaugino

λ1i and nV vector multiplets, each of them containing one vector and the second component

of one N = 2 gaugino λ2i. However, not all of them can simultaneously. Finally, only half

of the hyperscalars, parametrizing a Kähler manifold will survive the truncation.

We relabel the N = 2 indices Λ → Λ and i, i∗ → i, i∗ to label the N = 1 vector

multiplets with Λ and the chiral multiplets with i. We set

ψ2 µ = δǫψ2 µ = ǫ2 = 0 , (A.14)

and define

ψ•µ ≡ ψ1 µ , ǫ• ≡ ǫ1 . (A.15)

The supersymmetry transformations of the two gravitini become

δǫψ•µ =

(

∇µ +
i

2
Qµ + Aµ 1

1

)

ǫ• , (A.16)

δǫψ2 µ = Aµ 1
2ǫ• − T+

µνγ
νǫ• = 0 . (A.17)

This means that the component Aµ 1
1 of the SU(2) connection has to be integrated

into the Kähler connection and the component Aµ 1
2 and the graviphoton field strength

has to be set to zero

Aµ 1
2 = 0 , (A.18)

T+
µν = 0 . (A.19)
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The supersymmetry transformation rule of the graviton becomes, simply

δǫe
a
µ = − i

4
ψ̄•µγ

aǫ• + c.c. (A.20)

Let us now consider the N = 2 vector multiplets.

The most general solution to the constraint eq. (A.19) is to see it as an orthogonality

condition between the graviphoton projector and the vector fields [25, 26]. The N = 2

vector index is split Λ = (Λ,X), where Λ = 1, · · · , n and X = 0, 1, · · · ,nV −nV ≡ nC and

TΛ = 2iLΣℑmNΣΛ = 0 , FX+
µν = 0 . (A.21)

The N = 2 vector multiplets in the range Λ give only N = 1 vector multiplets (the

chiral multiplets have to be truncated) and those in the range X give only chiral N = 1

multiplets (the N = 1 vector multiplets must be truncated). Since the dual vector field

strengths

FX
+

µν = NXΛF
Λ+

µν = NXΛF
Λ+

µν + NXY F
Y +

µν , (A.22)

must also vanish for consistency, the off-diagonal blocks of the period matrix must also

vanish

NXΛ = 0 , (A.23)

and, therefore

TΛ = 2iLΣℑmNΣΛ = 0 ⇒ LΛ = 0 . (A.24)

Only the components LX survive, and, together with the period matrix NXY , define a

special Kähler manifold of dimension nV − nV = nC and with Kähler metric

Gij∗ = −2ℑmNXY f
X

if
Y

j∗ , i, j = 1, · · · , nC . (A.25)

The diagonal block

NΛΣ ≡ 1

2
f∗ΛΣ , (A.26)

determines the couplings of the scalars of the chiral multiplets to the vectors. It can be

shown that fΛΣ is a holomorphic function of the Zis.

The consistency of these conditions leads to several conditions that the special Kähler

manifold has to satisfy on order to be reducible to N = 1 and can be found in [25, 26].

It is convenient to study the supersymmetry transformations of the two gaugini in the

form

fΛ
iδǫλ

Ii = ifΛ
i 6∂Z iǫI +

1

2
6FΛ+ǫIJǫJ , (A.27)

where we have used the constraint eq. (A.19). Then, splitting the index i = (α, i) with

α = 1, · · · , n and i = 1, · · · , nC , the above equation splits as follows

fΛ
iδǫλ

1i = 0 , (A.28)

fX
iδǫλ

1i = ifX
i 6∂Ziǫ• , (A.29)

fΛ
αδǫλ

2α =
1

2
6FΛ+ǫ• , (A.30)

fX
iδǫλ

2i = 0 . (A.31)
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Then, we define the N = 1 gaugini and dilatini

λ•
Λ ≡ −fΛ

αλ
2α , (A.32)

χ•
i ≡ λ1i , (A.33)

and set to zero all the other components. Their resulting supersymmetry transformation

rules are

δǫλ•
Λ =

1

2
6FΛ+ǫ• , (A.34)

δǫχ•
i = i 6∂Ziǫ• . (A.35)

The supersymmetry transformation rules of the vector fields are split in

δǫA
Λ

µ =
i

8
λ̄•

Λγµǫ
• + c.c. , (A.36)

δǫA
X

µ = 0 . (A.37)

Finally, the supersymmetry transformation rules of the scalars split into

δǫZ
i =

1

4
χ̄•

iǫ• , (A.38)

δǫZ
α = 0 . (A.39)

Let us now consider the truncation in the hypermultiplet sector. The 4nH real di-

mensional quaternionic-Kähler manifold has to be truncated to a nH complex dimensional

Kähler manifold [25, 26]. The truncation can only be done in some quaternionic-Kähler

manifold: if we split the Sp(2nH) index α into A, Ȧ = 1, · · · , nH and the undotted in-

dices correspond to the sector which will survive, the components ΩȦḂĊḊ must vanish

identically. If this condition is satisfied, then one can set

U
2A = A

1 = A
2 = ∆A

Ḃ = ζȦ = 0 , (A.40)

consistently. The surviving components of the Quadbein are U
1A and its complex conjugate

U
2Ȧ which can be expressed in terms of just nH holomorphic coordinates ws.

The independent non-vanishing supersymmetry transformation rules of the hyper-

scalars and the hyperinos are

(U1Au)∗δǫq
u =

1

4
ζ̄•Aǫ• , (A.41)

U
1Auδǫζ•A = i 6∂quǫ• . (A.42)

Using the holomorphic coordinates ws we now define the nH N = 1 dilatini ζs

ζ•
s ≡ U

1Asζ•A , (A.43)

and the above supersymmetry transformation rules take the standard form

δǫw
s =

1

4
ζ̄•

sǫ• , (A.44)

δǫζ•
s = i 6∂wsǫ• . (A.45)
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The quaternionic Kähler manifolds that can be truncated to N = 1 chiral multiplets

are precisely those in which one can construct cosmic string solutions (hyperstrings): in

ref. [4] the supersymmetry equations were solved by choosing a metric of the form

ds2 = dt2 − (dx3)2 − 2eΦ(z,z∗)dzdz∗ , (A.46)

hyperscalars which are real functions of the complex coordinate z and its complex conjugate

qu(z, z∗). In these conditions, the supersymmetry conditions take the form

U
α2

u∂zq
u = U

α1
u∂z∗q

u = 0 , (A.47)

̟z
zz∗ = A

3
u ∂zq

u , (A.48)

A
1
u ∂mq

u = A
2
u ∂mq

u = 0 . (A.49)

They are clearly solved by setting A
1
u = A

2
u = U

α2
u = 0 and, then, taking the

hyperscalars to be holomorphic functions of z ∂z∗q
u = 0.
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[39] M. Hübscher, P. Meessen, T. Ort́ın and S. Vaulà, in preparation.
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